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Abstract 

As part of the PSST challenge, we explore how data 

augmentations, data sources, and model size affect phoneme 

transcription accuracy on speech produced by individuals with 

aphasia. We evaluate model performance in terms of feature 

error rate (FER) and phoneme error rate (PER). We find that 

data augmentations techniques, such as pitch shift, improve 

model performance. Additionally, increasing the size of the 

model decreases FER and PER. Our experiments also show 

that adding manually transcribed speech from non-aphasic 

speakers (TIMIT) improves performance when Room Impulse 

Response is used to augment the data. The best performing 

model combines aphasic and non-aphasic data and has a 

21.0% PER and a 9.2% FER, a relative improvement of 9.8% 

compared to the baseline model on the primary outcome 

measurement. We show that data augmentation, larger model 

size, and additional non-aphasic data sources can be helpful in 

improving automatic phoneme recognition models for people 

with aphasia. 

Introduction 

Aphasia is a dysfunction of the ability to understand or 

produce language caused by damage to brain regions 

used for speech (Damasio, 1992). A common, broad 

distinction made in classifying different forms of aphasia 

is between fluent and non-fluent aphasia (Feyereisen et 

al., 1991). While those with fluent aphasias, such as 

Wernicke’s aphasia, are typically able to produce 

syntactically and phonetically well-formed utterances, 

non-fluent aphasias such as Broca’s aphasia and 

transcortical motor aphasia are characterized by 

difficulties in articulating speech sounds or forming 

syntactically complex utterances. However, while most 

clinicians use fluency classifications in their diagnoses, 

the distinction is not well-defined (Gordon, 1998), and 

there is evidence that even so-called fluent aphasias 

involve errors in phoneme production (Blumstein et al., 

1980; Holloman & Drummond, 1991; Kurowski & 

Blumstein, 2016; Vijayan & Gandour, 1995), possibly as 

a result of impaired acoustic-phonological control 

(Robson et al., 2012). 

This phenomenon of inserting, deleting or 

substituting phonemes is known as phonemic 

paraphasia. Examples of this include lat for bat, or dake 

for drake. The errors are concentrated on nouns and 

verbs, and occur evenly on vowels, single consonants, 

and consonant clusters (Dalton et al., 2018). For 

consonants, erroneous productions most commonly 

differ from the target phoneme by a single phonetic 

feature, though errors containing multiple phonetic 

feature differences occur as well. Substitution errors 

occur more commonly than insertion or deletion errors. 

These unintended phoneme substitutions are believed to 

 
1 Equal contribution 

be caused by a cascading activation of a target and a 

competitor phonetic segment with a speech output 

showing properties of both the target and competitor 

phonemes (Kurowski & Blumstein, 2016). 

Several studies have shown that reliable phonemic 

annotation can be beneficial in the diagnosis of aphasia, 

and its distinction from acquired apraxia of speech 

(Cunningham et al., 2016), with phoneme distortion 

error rates being lower for patients with phonemic 

paraphasia. Error profiles can also be used as an indicator 

for the possibility of remediation of these phonological 

errors, as individuals displaying phonological errors 

display less improvement than individuals displaying 

motoric errors on a repetition training task (Buchwald et 

al., 2017). Finally, phonemic transcriptions are an 

important component in the development of 

individualized intervention plans for patients with 

aphasia (Abel et al., 2007). While the most obvious 

target for such interventions would be improving 

fluency, even difficulties with lexical retrieval such as 

those seen in individuals with anomic aphasia have been 

shown to improve through phonologic-level cueing 

(Wambaugh et al., 2001). The ability to automatically 

transcribe the speech of aphasic patients would allow for 

a richer profile of data for each individual with less 

burden on the clinician. Automatic speech recognition 

(ASR) has been proposed as a valuable tool for 

developing effective speech therapy interventions (Jamal 

et al., 2017), but achieving robust, high-accuracy ASR 

for aphasic speech remains a challenge. 

In this paper we explore how speech data 

augmentations, data sources and model parameters can 

be optimized to create a robust, high accuracy phoneme 

transcription model for aphasic speech. We hope to give 

the reader an intuition about the steps involved in the 

creation of such a model with the aim of describing our 

work in such detail that it can be easily reproduced. 

Phoneme feature vectors 

The goal of the Post-Stroke Speech Transcription (PSST) 

challenge is to create accurate automatic transcriptions 

of phonemes produced by speakers with aphasia. To this 

end, we use phonemic feature vectors in order to more 

precisely quantify the degree to which a produced 

phoneme differs from a target phoneme. A phoneme 

feature vector maps phonemes to their articulatory 

correlates (Chomsky & Halle, 1968). The features 

correspond to aspects such as vocal tract cavity 

configurations, place and manner of articulation, glottal 

states of sounds, and tongue body positions. A value of 

[+] for a given feature indicates that the feature is 

present, [-] indicates that it is absent, and [0] indicates 



that a phoneme is unmarked with respect to that feature 

(i.e., the feature is not relevant for defining the 

phoneme). For example, the consonant /f/ is [- voice] 

while the consonant /v/ is [+ voice]. Feature error rate 

(FER) allows for a more fine-grained analysis of errors 

in aphasic speech, penalizing errors that sound more 

similar to the target less severely, in contrast to phoneme 

error rate (PER), which does not indicate how dissimilar 

a produced phoneme is from a target phoneme and treats 

all incorrect productions equally. 

 

Models for aphasia prediction 

Recently, Self Supervised Learning (SSL) has attracted 

a lot of interest in all data modalities because of the high 

cost of annotation of data; models like BERT (Devlin et 

al., 2019), SimCLR (T. Chen et al., 2020) have shown 

the ability to learn in a self supervised setting, either by 

predicting the next token or by contrastive learning. SSL 

is especially useful in the audio modality, mainly 

because of the presence of an abundance of unannotated 

audio data on the internet. With recent advances in deep 

learning, architectures like HuBERT (Hsu et al., 2021) 

and wav2vec 2.0 (Baevski et al., 2020) have shown 

results on par with supervised learning methods while 

reducing the overhead of gathering annotated data. In 

this work, we explore wav2vec 2.0 Base and Large 

models with various data augmentation methodologies to 

transfer the speech recognition knowledge of the pre-

trained model to speech generated by a person with 

aphasia. 

Data augmentation 

Many deep learning pipelines incorporate data 

augmentation as an important technique to achieve state-

of-the-art results (S. Chen et al., 2020). It is known to 

improve generalisation and learn translation invariance, 

which is useful for the models to learn the underlying 

structure of data instead of specific aspects of the training 

samples, resulting in better performance (Worrall et al., 

2017). It has shown-state-of-the-art results in different 

modalities such as images (Krizhevsky et al., 2012) and 

text (Feng et al., 2021). Data augmentation has also been 

applied successfully in the audio modality, resulting in 

major improvement in speech classification and speech 

recognition (Tak et al., 2022). In this paper we augment 

the audio data in the waveform domain, giving us more 

training samples while maintaining the i.i.d assumption 

of the empirical data samples. 

Data 

Datasets 

In our experiments we explored how combining and 

augmenting data could help improve our predictions. We 

explored how training on the PSST, TIMIT, and 

Common Voice datasets affected model performance. 

Data statistics are summarised in Table 1. 
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Dataset Number of 

segments 

Manually 

transcribed 

PSST 2298 Yes 

TIMIT 1414 Yes 

Common Voice 15777 No 

Table 1: Dataset overview 

PSST 

The PSST challenge dataset consists of a subset of the 

Aphasia Bank data (MacWhinney et al., 2011) annotated 

with manually transcribed phonemes and made available 

through the python package psst-data (Gale et al., 2022). 

The data consists of 2298 utterances in the training 

dataset, 341 utterances in the validation dataset and 652 

utterances in the test dataset. Speakers with several 

different types of aphasia, as categorized by the Western 

Aphasia Battery (WAB) (Risser & Spreen, 1985), were 

represented in the training dataset. Of the 73 speakers, 26 

had anomic aphasia, 18 had conduction aphasia, 18 had 

Broca’s aphasia, 8 had Wernicke’s aphasia, 2 had 

transcortical motor aphasia, and one speaker was 

classified as not aphasic based on their WAB results. 

 

TIMIT 

TIMIT (Garofolo et al., 1993) is the most commonly 

used dataset for phoneme recognition, as it is one of the 

few datasets available with phoneme labels (Lopes & 

Perdigao, 2011). Although TIMIT, like the PSST data, 

uses a phoneme set based on ARPAbet, it is based on a 

revised version. While, for the most part, there is a 

simple mapping to the version of ARPAbet used in the 

PSST data, there are three items that do not map exactly. 

To avoid introducing imprecision into the training data, 

we elected to choose only segments that did not include 

these three items; as the number of segments was quite 

low, we also drew from the test set. In total, 1414 

segments were used (1016 from train, 398 from test). 
 

Common Voice 

Common Voice is a crowdsourced dataset of speakers of 

different languages. We used a subset of the English 

Common Voice with automatically added ARPA-

phonemes using the open source Python g2p package2. 

Data augmentation 

We used the open source audiomentations library 3  to 

augment the PSST data as well as other datasets used in 

training. In our data augmentation we strove both to 

augment the available samples of the PSST Dataset to 

increase their number still keeping the dataset balanced 

and similar to the original PSST dataset, and to induce 

the noisy artefacts of PSST dataset into TIMIT. 

 

Gaussian noise 

Though seemingly paradoxical, adding noise to the data 

acts as regularization and improves generalization 

(Bishop, 1995). 
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Time stretch 

Time stretch is a data augmentation where the audio file 

is either sped up or slowed down without affecting the 

pitch. 

 

Pitch shift 

We use pitch shift to vary the pitch of the signal. Pitch 

shift modifies the pitch of the audio sample either by 

raising or lowering the pitch while keeping the duration 

of the audio unchanged (Salamon & Bello, 2017). It is, 

in some ways, an inverse of the time stretch 

augmentation. 

 

Voice conversion 

We used the official open source implementation 4  of 

Chou et al., (2019) to do one-shot voice conversion of 

audio files to improve the variability in data and make 

the data more speaker independent. They use a VAE 

(Kingma & Welling, 2013) as a generative model with 

two encoders, where one is a context encoder while the 

other is a speaker encoder, with the use of Instance 

Normalization (IN) (Ulyanov et al., 2016) and Adaptive 

Instance Normalization (AdaIN) (Huang & Belongie, 

2017) they synthesise the text conditioned on the target 

speaker representation. In our experiments, for all of the 

audio files of each speaker, the target audio file was 

chosen at random from all other speakers and was 

augmented to their speaker characteristics. This gave us 

varied samples of the same utterance but with different 

speaker characteristics. 

 

Room Impulse Response 

Room Impulse Response (RIR) augmentation is a 

technique for simulating room acoustics (Habets, 2006). 

The audiomentations library uses a wave-based 

technique, where recordings with the reverberance 

qualities of a particular room have been isolated and 

applied to the input using a convolution operation. 

We used two sets of publicly available impulse 

responses: EchoThief5 and the MIT McDermott dataset6, 

from which a recording is selected at random for 

application to the utterance. 

Data processing 

All data was processed to work with the fairseq (Ott et 

al., 2019) framework in order to standardize the training 

process. 

Model architecture 

For training we chose to fine-tune wav2vec 2.0. 

 

wav2vec 2.0 

wav2vec 2.0 (W2V2) is an architecture proposed in 

Baevski et al., (2020) that uses self-supervision in the 

audio domain to create audio vectors that can be used in 

training. The model consists of a multi-layer convolution 

feature encoder that takes as input raw audio and outputs 

latent speech representations. These latent 

representations are then fed to a Transformer to build 

representations that has the ability to capture information 
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6 https://mcdermottlab.mit.edu/Reverb/IR_Survey.html 
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from the whole length of the sequence. This is done 

through a masking function in the audio domain. 

For our training, we chose to focus on the wav2vec 

2.0 base model and the wav2vec 2.0 large model, to 

make a comparison of how model size affects and 

interacts with other techniques used while training. The 

model hyperparameters are mentioned in Table 2. 

 

wav2vec 2.0   

Model Base Large 

Transformer blocks 12 24 

Attention heads 8 16 

Model dimension 768 1024 

Inner dimension 3072 4096 

Table 2: wav2vec 2.0 model variants and hyperparameters. 

Fine-tuning 

Pre-trained base models are fine-tuned for phoneme (and 

speech) recognition by adding a linear projection on top 

of the model, used to classify into the number of tokens 

found in the phoneme vocabulary (42). 

Language model 

Language modelling refers to the use of various 

statistical and probabilistic methods to estimate the 

probability of a sequence of words. 

Evaluation 

Phoneme error rate 

Phoneme error rate is the number of phoneme errors 

(edits, insertions, and substitutions) divided by the 

number of phonemes in the reference transcript, 

calculated using the Levenshtein distance (Levenshtein, 

1966). 

Feature error rate 

Feature error rate is the number of phoneme feature 

errors where phonemes which differ by fewer features 

are considered more correct. Transcribed phonemes are 

converted into phoneme feature vectors in order to 

calculate the feature error rate using the Levenshtein 

distance. 

Experiment 

In order to improve reproducibility we kept the hyper-

parameters constant using the same parameters as those 

used in the psst-baseline training7. We trained in a warm 

state manner with 4000 warm updates keeping learning 

rate at 5e-05 using the Adam optimizer to train the 

model. 

Table 3 contains a summary of the best performing 

models. 

Base models 

Two pre-trained wav2vec 2.0 models were used as base 

models for all experiments: “wav2vec 2.0 Base” and 

“wav2vec 2.0 Large” are the “No finetuning” versions of 

the models, as found in the fairseq GitHub repository8. 

8 
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Name Model FER PER 

PSST Baseline Base 10.2% 22.2% 

Reproduced Baseline Base 10.4% 23.1% 

Baseline + TIMIT RIR Base 9.6% 21.8% 

Gaussian Noise (DA) Base 9.9% 22.9% 

W2V2 Large Large 9.8% 20.9% 

W2V2 Large Time-Stretch Large 10.0% 21.2% 

W2V2 Large Pitch-Shift Large 9.5% 21.2% 

W2V2 Pitch-Shift + TIMIT 

RIR 

Large 9.7% 21.2% 

W2V2 Large + TIMIT RIR Large 9.2% 21.0% 

Table 3: Experimentation results with different combinations 

of model and augmentations 

PSST augmentations 

We augmented the PSST dataset with augmentations 

defined in section Data augmentation. We used Gaussian 

noise as a data augmentation for the base model and pitch 

shift and time stretch independently as augmentations for 

two large models. 

PSST with augmented TIMIT 

As speech recognition models can often be sensitive to 

differences in acoustic conditions; it is not automatically 

the case that additional data will lead to an improvement 

when there is a difference in recording conditions. 

Because of the mismatch of recording conditions 

between TIMIT, which was recorded in clean conditions, 

and the PSST data, which was not, we experimented with 

augmenting the TIMIT data alone, to attempt to 

artificially match the PSST data. As well as Gaussian 

noise, pitch shift, and time stretch, we also added RIR to 

match the dry, studio conditions of TIMIT to PSST. 

Language model 

To explore the effect of the language model, we 

augmented the transcription data of the combined PSST 

and TIMIT datasets with the CMU Pronouncing 

Dictionary (CMUdict)9, across configurations of 4-, 5-, 

and 6-gram models. 

We used two versions of the PSST+TIMIT data: 

unmodified, and with silence tokens removed (and the 

spoken noise token, in the case of PSST); to emulate the 

silence between words with CMUdict, we used the 

unmodified entries, entries with a silence token added at 

the start, added at the end, and added at both start and 

end, with an additional “all silences” configuration 

which combined all configurations. 

Results 

The results of our experiments are summarised in Table 

3. While evaluating on the PSST validation dataset we 

found improved scores for several techniques. 

While some training heuristics—such as adding an 

n-gram language model and using data augmentation 
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such as Voice Cloning, Gaussian Noise and Time-

stretch—had results comparable to the baseline trained 

on PSST dataset with wav2vec 2.0 (FER: 10.2, PER: 

22.2), other configurations lead to improved results. 

The wav2vec 2.0 large model trained on the PSST 

data had a relative improvement of 5.86% for PER (20.9 

vs 22.2) and 3.92% for FER (9.8 vs 10.2). 

The wav2vec 2.0 large model trained on the PSST 

data with pitch shift improved the scores by 4.5% for 

PER (21.2 vs 22.2) and 6.86% for FER (9.5 vs 10.2). 

The wav2vec 2.0 large model trained on the PSST 

data with pitch shift + TIMIT improved the scores by 

4.5% for PER (21.2 vs 22.2) and 7.3% for FER (9.7 vs 

10.2). 

The wav2vec 2.0 base model trained on the PSST 

data + TIMIT with RIR achieved the best score of the 

various combinations of augmentations, improving the 

scores by 1.8% for PER (21.8 vs 22.2) and 5.88% for 

FER (9.6 vs 10.2). 

The wav2vec 2.0 large model trained on the PSST 

data + TIMIT with RIR achieved the best overall score, 

improving the results by 5.41% for PER (21.0 vs 22.2) 

and 9.8% for FER (9.2 vs 10.2). 

As part of our experiments we also reproduced the 

baseline model. Our reproduced baseline had lower 

scores than the PSST Baseline by 1.96% for PER (10.4 

vs 10.2) and 4.05% for FER (23.1 vs 22.2). 

Furthermore, we evaluated training on Common 

Voice and TIMIT without PSST, finding that these 

models were not successful at aphasic phoneme 

recognition without fine-tuning on aphasic speech. We 

also continued fine-tuning Common Voice on PSST with 

poor results. 

 

Language models 

The best performing language model, 5-gram with 

silences removed from PSST and TIMIT, but with 

CMUdict data with silence tokens added at the end, 

achieved PER of 22.1%, compared with the baseline of 

PSST and nonaugmented TIMIT without a language 

model (PER 22.5%). No difference in FER was observed 

with any language model configuration. 

 

Model availability 

The models are available for download on the 

Huggingface hub10. 

Discussion 

In this paper, we looked at the challenges of the current 

Automatic Speech Recognition (ASR) techniques for the 

low-resource task of aphasic phoneme recognition, and 

devised heuristics for improving the phoneme 

transcriptions. 

Training with a larger baseline model was one of the 

most straightforward ways to improve performance. In 

general, all the models trained with wav2vec 2.0 Large 

outperformed similar models trained with wav2vec 2.0 

Base. This is in line with the current trend in deep 

learning, where larger self-supervised transformer 

models outperform the state of the art by keeping 

architecture similar while increasing model size. 

10 https://huggingface.co/birgermoell 



However, training on larger models has several 

drawbacks, one being increased training and inference 

time, another being the need for specialised GPUs that 

might be expensive to acquire or use. If compute is a 

bottleneck, it might be sensible to start by training a 

smaller model with different parameters and later train a 

larger model after good parameters have been found that 

improve performance. 

Data augmentations on PSST was another technique 

that improved the performance. Pitch shift was the most 

useful augmentation technique, with models using pitch 

shift showing good results especially on FER. Pitch shift 

transformation could be viewed as a transformation of 

the vocal tract length of the speaker, which keeps the 

phoneme features constant while changing the vocal tract 

length, which could help the model to generalise the 

difference between phonemic features and make the 

model more speaker independent. 

While working with data augmentation it is 

important that the underlying structure of the data is 

preserved, i.e., data augmentation should aim to help the 

model learn by augmenting features in the dataset, but 

not change the features so much that the underlying 

signal in the data gets corrupted. Voice cloning was an 

experiment where the data augmentation might have 

failed in this regard and the augmented samples had, in 

general, a lower pitch than the originals. When working 

with data augmentation, we believe that an inspection of 

the augmented data itself is a good first step in 

determining if the data will be useful for training. Here, 

common sense reasoning by a person knowledgeable in 

the field should suffice. If the data sounds reasonable, it 

has the potential to be helpful for improving model 

performance. This might seem obvious, but in the 

paradigm of large training sets and large models we still 

want to emphasize the importance of keeping a human in 

the loop. 

A limitation in our work is the small size of the PSST 

dataset and the modest improvements we made 

compared to the baseline. The small dataset size makes 

it harder to determine how well our models have 

generalised. When working with deep learning models it 

is always hard to determine how parameters interact and 

we think it is sensible to view this work as a way to 

understand data augmentation in the aphasic phoneme 

domain rather than seeing it as a recipe for achieving 

state of the art. 

An interesting scientific question is: to what degree 

do aphasic phonemic speech models improve by training 

on different data sources consisting of non-aphasic 

speech? 

We found that training a model only on Common 

Voice or TIMIT was not sufficient to get a working 

model. This shows that at least in our experiment some 

part of the data needs to be aphasic. Furthermore, we 

continued fine-tuning on PSST from the model trained 

on Common Voice with limited results. This might be 

because Common Voice was automatically transcribed, 

but it may be related to the order of training. 

In our experiment we found that the best performing 

model trained on TIMIT + PSST is close in performance 

to the best performing model trained only on PSST data. 

Here, data augmentations on TIMIT using RIR to make 

the data sound similar to PSST clearly helped 

performance by bringing the datasets more into 

alignment. 

In theory, a similarly performing model that is 

trained on both aphasic and non-aphasic speech is 

preferable, as it has the potential to generalise better. 

Since our best performing model uses both aphasic and 

non-aphasic speech, a fair conclusion is that non-aphasic 

speech prepared in the proper format is a data source 

augmentation worth exploring when working with 

aphasic data. 

A well-functioning phonetic and feature error 

prediction model for aphasia appears a promising way 

forward in order to build automated electronic tools for 

aphasia recovery. 

Improved understanding of aphasia through 

automated tools for testing might also help determine 

which individuals are most helped by specific 

interventions. 

Conclusion 

In conclusion, our paper has shown that data 

augmentation, larger model size and additional non-

aphasic data sources can be helpful in improving 

automatic phoneme recognition models for people with 

aphasia. 
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